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Abstract—Cinchonine based phase-transfer catalysts were developed for enantioselective conjugate additions to electron deficient
alkenes, including acylates, acrylonitrile, and chalcone. N-Trifulorobenzyl cinchoninium bromide 6 catalyst (20 mol %) in THF
at —40 °C promoted the conjugate addition of arylketone glycolate 1 generating S-product 2 in good yields and selectivities. Cata-
lyst, solvent, and base variations are presented along with conditions to convert the products to intermediates useful for multistep
applications.

© 2007 Published by Elsevier Ltd.

1,5-dicarbonyl-2-hydroxy

Phase-transfer catalysis (PTC) has become a practical
method for asymmetric synthesis.! The process is partic-
ularly attractive using benzophenone protected glycine
for alkylation, conjugate addition, and epoxide forma-
tion.? PTC provides numerous benefits including the
use of inexpensive cinchona-derived catalysts, which
are readily available in pseudo-enantiomeric antipodes,
the use of simple hydroxide bases, and mild conditions
performed in either liquid-liquid or liquid-solid mode
over an extended temperature range. The formation of
C-C bonds through a direct alkylation is a significant
synthetic challenge with only a few successes based on
catalytic methods.? We previously reported PTC condi-
tions for alkylations using diphenylmethyl (DPM) aryl-
ketone 1 to give S-products 2 with alkyl halides (Scheme
1).3¢* Optimal catalysts in this case proved to be the
cinchonidine (CD) derived ammonium bromides 3 and
4, previously developed by Corey, Lygo, and the group
of Park and Jew.> The protected products 2 in this case
are readily transformed to the corresponding hydroxyes-
ter intermediate. The new glycolate approach was
applied to the synthesis of the diabetes drug ragaglitazar
and the farnesyltransferase inhibitor kurasoin A.* This
substrate has also been developed for asymmetric PTC
aldol reactions where the cinchonine (CN) based cata-
lysts 5 and 6 were shown to be most effective to generate
protected 1,2-diol products.® We now report the devel-
opment of a novel asymmetric PTC Michael-type conju-
gate addition with the substrate arylketone 1 to access
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glutaric acid derivatives,
substituted products.

Diphenylmethyl (DPM) glycolate 2,5-dimethoxyphenyl
ketone 1 was produced as before in three steps beginning
with bromoacetic acid.* Various catalysts were initially
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Table 1. Conditions for acrylate conjugate PTC

o R*,N*Br 10 mol % % 0
DPMO\)kAr CsOH+H,,0 MeOwAr
1 O -40 DPMO

N
Ar=2,5-(MeO),Ph OMe

Entry Solvent Cat. Time (h) % Yield % ee
1 THF 3 3 61 20
2 THF 4 3 60 27
3 THF 5 2 58 73
4 THF 5 7.5 59 81%
5 THF 5 L5 54 82°
6 THF 6 2.5 60 63
7 DCM/n-hex 6 24 53 25
8 Tol 6 51 80 60
9 PhCl 6 9 71 42

10 THF/tol 6 16 77 59

4 Using 20 mol % catalyst 5.
® With 20 mol % 5 at concentration of 0.3 M.

screened for reactivity using methacrylate (3.5 equiv) at
—40 °C with cesium hydroxide hydrate (5 equiv) as base
(0.2 M, Table 1). Cinchonidine (CD) derived catalysts 3,
4 proved to be highly reactive; however the selectivities
obtained were low at 20-27% ee (chiral HPLC, entries
1 and 2). THF was found to be the optimal solvent, pro-
viding for short reaction times. Cinchonine (CN) cata-
lysts 5 and 6 were found to give high selectivities, again
for S-isomer 2, used in THF. When the catalyst load
was increased to 20 mol %, N-anthracenylmethyl-5 gave
product with 82% ee and moderate yield of 54% after
only 1.5h (entry 5). This combination of catalyst 5
proved to be optimal in this case. Other catalysts investi-
gated included C9-hydroxy and benzylated ethers, in
the place of the O-allyl substituent, in both the CD
and CN series. All were found to be inferior to CN-5
showing very low (0-10% ee) selectivities. The Maruoka
di-2-naphthylbisbinaphthyl ammonium bromide also
gave 2 with low (10% ee) selectivity.” The more common,
less-polar PTC solvents, dichloromethane, toluene, chlo-
robenzene, and various solvent combinations required
much longer reaction times and gave product with lower
selectivities (entries 7-10). In some cases, however,
higher isolated yields of 2 were obtained.

Catalyst 5 in THF was further explored with substrate
variations (Table 2). While 2,5-dimethoxyphenyl DPM
protected ketone 1 was the initial substrate, as optimized
previously for PTC alkylation, we needed to access the
effect of substrate variations on the new conjugate addi-
tion reaction. As seen previously,* the simple phenyl
ketone 1 (entry 1) gave lower selectivity, 48% ee. The
addition of electron rich methoxy groups showed
improved yield and selectivity (entries 2-4). The more
electron rich enolate will form a tighter ion-pair with
the catalyst with accentuated van der Waals contacts
generating improved selectivity. The position of the
methoxyls in this case is also critical, as seen comparing
2,4-dimethoxy 1 (entry 4) at 65% ee for 6 h and 2,5-
dimethoxy 1 (entry 5) at 82% ee after only 1.5h as
before shown in Table 1. Improved isolated yields were

Table 2. Substrate variations for conjugate PTC

o) 5 20 mol % o O
CsOH-H,0
PO 2
JkAr = MeOWAr
1 L THF 0.3M PO
N">0OMe -40 °C -2
Entry P Ar Time (h) % Yield % ee
1 DPM Ph 0.5 56 48
2 DPM  4-MeOPh 4.5 60 69
3 DPM  2-MeOPh 1.5 65 72
4 DPM  24-MeO),Ph 6 51 65
5 DPM  2,5-(MeO),Ph 1.5 54 82
6 DPM  2,5-(MeO),Ph  0.25 70 64%
7 DPM  2,5-(MeO),Ph  0.75 62 78P
8 Bn 2,5-(MeO),Ph 5.5 52 81
# Performed at 0 °C.
b At —20 °C.

obtained, at the expense of selectivity, when the reaction
was performed at higher temperatures. When performed
at 0 °C, a yield of 70% (entry 6, 64% ee) was obtained.
After only 15 min, the starting material 1 was consumed.
At —20 °C, the reaction was complete in 45 min and a
yield of 62% (entry 7, 78% ee) was found. The influence
of the glycolate O-protecting groups was also explored.
Previous PTC alkylations with 1 showed that the com-
mon benzyl group (Bn) at this position lowered the
selectivity to 71% ee.* In this case for conjugate addi-
tion, 1 with a Bn group in the place of DPM also gave
excellent selectivity at 81% ee (5.5 h, entry 8). Shorter
reaction times (1.5 h) prompted continued investigation
of the DPM substrate 1.

Further improvements were found when conditions
were explored using 50% aqueous KOH as base mixed
with THF (Table 3). This combination allowed for
sub-zero temperatures, at —40 °C with improved yield
and selectivity. A 72% isolated yield was obtained with
83% ee with methacrylate (entry 1). Use of toluene or
THF/toluene (7:3) as solvent further improved the selec-
tivity to 86% ee (entries 2 and 3). Fluorinated anthr-
acenylmethyl-CN catalysts 7 and 8% were also shown
under these conditions to give high selectivities at 83%
and 79% ee (entries 4 and 5). Ethyl and #-butyl acrylate
(entries 6 and 7) gave high selectivities, 82% and 78% ee,
for conjugate addition using the THF/toluene mixture.
Acrylonitrile proved to be a problematic electrophile
giving low yields and high selectivity, as with CsOH:
H,0 and using 50% KOH, 90% ee (entry 8). Chalcone,
with a B-phenyl substituent, also reacted to give PTC
conjugate addition products (entry 9). In this case a
2:3 mixture of syn:anti diastereomers was obtained with
73% and 27% ee, respectively. An X-ray crystal structure
was obtained in this case for the purified major anti
isomer.’

The S-stereochemistry of the addition products 2 was
established by direct comparison to known material
(Scheme 2). The labile DPM group was removed and a
benzoate was attached to generate 9. Baeyer—Villiger
type oxidation conditions of Shibasaki,'® as employed
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Table 3. Conjugate PTC with other electrophiles

o 5 20 mol % 0
FG
DPMO\)J\Ar 50% KOH \/\l)J\Ar
1 E* THF -40 °C DPMO
Ar=2,5-(MeO),Ph S-2
Entry E* FG Time % %
Yield ee
0
1 CO,Me 5 72 83
\)I\OMe
0
2 CO,Me 3 52 86°
VI\OMe
O b
3 CO,Me 7 75 86
\)J\OMe
o)
4 CO,Me 10 59 83¢
\ 2
\)I\OMe
O d
5 CO,Me 7 68 79
\)J\OMe
O b
6 CO,Et 6 68 82
\ 2
\)J\OEt
O b
7 CO,t-Bu 24 63 78
VJ\Ot-Bu
8 X CN CN 6 25 90¢

(0]

’ Ph/\/U\Ph

# Using toluene as solvent.
°With THF/tol, 7:3.

¢ Using 7 as catalyst.

4 With 8 as catalyst.

¢ Using CsOHH,0.

2.3 ratio of syn, anti isomers.
€ syn isomer, 27% ee for anti.

PhCO, 3-Ph 19 63" 738

previously using bis-trimethylsilylperoxide with catalytic
tin chloride and (+4)-di-p-toluene sulfonamide cyclohex-
ane,>® gave the aryl ester 10. Treatment with sodium
methoxide in methanol allowed for the formation of
the methyl glutamate ester and protection with benzyl-
oxymethyl chloride gave the known (—)-diester 11 with-
out epimerization.!!

Asymmetric conjugate addition has been demonstrated
using a glycolate substrate for the production of a-alk-
oxy substituted products. A variety of acrylate sub-
strates react with good yield and selectivity using
cinchonine-derived catalysts using either cesium hydrox-
ide under liquid—solid condition or 50% aqueous KOH
with added THF.

o] 0 1) TiCl;, DCM o o
-78 °C
MeO AT 2) BzClI, pyr. MeO Ar
—
DPMO 5 84% 9 BzO
Ar=2,5-(MeO),Ph
(TMSO), o) o] 1) NaOMe 76%
SnCl,, 4A MS 2) BOMCI, i-Pr,NEt
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Scheme 2.
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